Generalized LASSO with under-determined regularization matrices

نویسندگان

  • Junbo Duan
  • Charles Soussen
  • David Brie
  • Jérôme Idier
  • Mingxi Wan
  • Yu-Ping Wang
چکیده

This paper studies the intrinsic connection between a generalized LASSO and a basic LASSO formulation. The former is the extended version of the latter by introducing a regularization matrix to the coefficients. We show that when the regularization matrix is even- or under-determined with full rank conditions, the generalized LASSO can be transformed into the LASSO form via the Lagrangian framework. In addition, we show that some published results of LASSO can be extended to the generalized LASSO, and some variants of LASSO, e.g., robust LASSO, can be rewritten into the generalized LASSO form and hence can be transformed into basic LASSO. Based on this connection, many existing results concerning LASSO, e.g., efficient LASSO solvers, can be used for generalized LASSO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Performance of Group Lasso for Arbitrary Design Matrices

In many linear regression problems, explanatory variables are activated in groups or clusters; group lasso has been proposed for regression in such cases. This paper studies the nonasymptotic regression performance of group lasso using `1/`2 regularization for arbitrary (random or deterministic) design matrices. In particular, the paper establishes under a statistical prior on the set of nonzer...

متن کامل

Using the LASSO's Dual for Regularization in Sparse Signal Reconstruction from Array Data

Waves from a sparse set of source hidden in additive noise are observed by a sensor array. We treat the estimation of the sparse set of sources as a generalized complex-valued LASSO problem. The corresponding dual problem is formulated and it is shown that the dual solution is useful for selecting the regularization parameter of the LASSO when the number of sources is given. The solution path o...

متن کامل

Split LBI: An Iterative Regularization Path with Structural Sparsity

An iterative regularization path with structural sparsity is proposed in this paper based on variable splitting and the Linearized Bregman Iteration, hence called Split LBI. Despite its simplicity, Split LBI outperforms the popular generalized Lasso in both theory and experiments. A theory of path consistency is presented that equipped with a proper early stopping, Split LBI may achieve model s...

متن کامل

Asymptotic Equivalence of Regularization Methods in Thresholded Parameter Space

High-dimensional data analysis has motivated a spectrum of regularization methods for variable selection and sparse modeling, with two popular methods being convex and concave ones. A long debate has taken place on whether one class dominates the other, an important question both in theory and to practitioners. In this article, we characterize the asymptotic equivalence of regularization method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal processing

دوره 127  شماره 

صفحات  -

تاریخ انتشار 2016